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Fermionic order and disorder variables and correlation 
functions* 

R E Gamboa Saravit and E C Marino 
Depanamento de  Fisica, Pontificia Universidade Cat6lica do Rio de  Janeiro. CP 38071, 
22452 Rio de  Janeiro RI, Brazil 

Received 23 November 1990 

Abstract. Order and disorder operators and correlation functions are studied in the context 
of a fermionic quantum field theory in I + I dimensions. 

The concept of order-disorder duality has its roots in the work of hammers  and 
Wannier [l]  who advanced the idea that a complementarity should exist between the 
ordered and disordered phases of a given system. More recently, Kadanoff and Ceva 
[2] introduced the concept of a disorder variable and showed that these operators 
should obey certain commutation relations with the basic hamiltonian variables which 
are known as dual algebra. Later on, Fradkin er d [ 3 ]  showed that the disorder operator 
should be the creation operator of the topological excitations eventually present in the 
system, arriving thereby at an interpretation of phase transitions as a condensation of 
topological excitations. 

The idea of order-disorder duality was introduced in the framework of (1 + 1)- 
dimensional continuum quantum field theory in [41 where it was shown, in particular, 
that the Mandelstam soliton creation operator [SI, the cornerstone of the bosonization 
method [ S ,  6,9], could be treated as a product of order and disorder variables whose 
correlation functions could be obtained by generalizing the methods of Kadanoff and 
Ceva [2] for continuum field theory. In this way, the ideas of order-disorder duality 
[ l ,  21, soliton creation operators [3] and bosonization [5,6] were unified in [4]. 

The order-disorder duality concept was also used in the full operator quantization 
of solitons [7] in two, three and four spacetime dimensions [8]. 

In the present work, we take the theory of a free massless fermionic field in 1 + 1 
dimensions and introduce the correlation functions of the order and disorder variables 
which may be identified in such a theory, according to the formulation established in 
[7]. These correlation functions turn out to be fermionic determinants, evaluated at 
certain given external fields A,,. These determinants may be computed exactly and we 
show that the correlation functions of the composite order x disorder operator are 
identical to the massless Thirring field correlation functions [91. We thereby re-obtain 
the equivalence of the massless Thirring model (MTM) to a free fermion, from a different 
point of view, which allows us to obtain of the exact solution for the correlation 
functions without having to resort to bosonization. 
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From the form of the correlation functions, we infer expressions for the dual 
operators and show that they obey a dual algebra which generalizes that of [2] for 
continuum quantum field theory. 

Given the Lagrangian 

3 = i&d+ (1) 

it follows that an  order-disorder duality structure may be uncovered and which is 
embodied in the local order and disorder operators, respectively, u ( x )  and p ( x )  [7]. 
The correlation functions of such dual objects were studied in [7] where it was shown 
that, in the case of the Lagrangian above, the Euclidean disorder correlation function 
is 

( p ( ~ ) p * ( y ) ) = Z - ’  DgD&eap[-[ d’ri&D+] = d e t [ g  (2) 

where D,=J,-ieA,(z;x,y) and 

A,(z; x , y ) =  ~ ” ” 8 ~ ( z - f ) d f ~ .  (3) I:, 
In the expression above, C is an arbitrary curve in Euclidean 2-space, connecting x 
and y.  The correlation function (pp*)  is independent of C. This may be seen by 
performing the gauge transformation 

In this expression, B(R) is the two-dimensional Heaviside function with support in 
the region R, whose boundary is r = C - C’. 

In analogous way, it was shown in [7] that the Euclidean order correlation function 
is given by 

( u ( x ) u * ( y ) ) = Z - ’  D+D&exp[ - l  d2zi$&] =det[$] (5) I 
where 6, =a, - i&,(z; x, y )  and 

2 , ( z ; x , y ) = - i ~ , A ” ( z ; x , y ) = - i  s2 (z - t )d fw .  (6) I:, 
Since 2, does not contain the E*”, it follows that path independence can no longer 
be obtained by the gauge transformation (4). In order to obtain a local U field and, 
as a consequence, a path independent (uu*) function, we will have to introduce, later 
on, a path-dependent renormalization counterterm. 

In expressions (2) and (9, the constants e and i appearing in D,, and fi,, are real 
parameters on which the disorder and order operators depend. 

The generalization of (2) and ( 5 )  for arbitrary correlation functions may be obtained 
straightforwardly, by just inserting additional external fields A, or A,. One may obtain, 
for instance, the mixed Euclidean four-point function (uu*pp*) as 



Fermionic order and disorder variables 1589 

From (2) and (9, one can read the form of the dual operators U and p. In Minkowski 
space, we have 

I 
I 

d‘z?(z)A*(z; x) 

d‘zj’(z)A,(z;x) 

where 

Ap(z; X) = E,,S’(Z - 5) d 5  Y (9) I?: 
and j p =  &y”$ is the U(1) current and = ~@”j, = &y’ys$ is the axial U(1) current. 
Choosing the curve c in (9) as a straight line going from x to 00 along the 5‘ axis and 
using the current algebra relation 

(10) [ j o ( x ,  t),j’(x t)] = iJ,S(x-y) 

it is easy to show that 

AX, t ~ y ,  I )  = exp( i:o(x - y ) )  u (y ,  t ) p ( x ,  t). (11) 

This is the dual algebra which generalizes that of Kadanoff and Ceva [2] for continuum 
field theory [4,7,8]. 

The expression for the fermionic determinant appearing in (Z), (5 )  and (7) is well 
known [lo] and the result for the mixed function will be 

(+)O*(Y ) I L ( X ’ b * ( Y ’ ) )  

=exp I -- ;*I d2z(eA,+&) [ S”’-y] (eAv+Z.&)]. 

The expression in the exponent in (12) contains four terms, namely T,i+ T,z+ Te5+ T5-. 
Let us evaluate them. Using the fact that J-’ = (1/27l) lnlz and equation (3),  we may 
write the J”J” p a n  of Tez as 

Expanding the product E ” ~ E ” ’  = S”6”’ - S”’S’“ and using the fact that 
a2((1/271) Inlz-z’l)= ~ ’ ( z - z ’ ) ,  wesee that thefirsttermintheexpansionoftheproduct 
of E’S cancels the S ”  p a n  of T,z. After integration over z and z‘ we are left, therefore, 
with 

or  

e2 
271 (14) Te> = -- [Inlx‘ - y’l -In/ E I]. 

In arriving at (14), we used the fact that a,=-J, acting on ln15-vl. In the last 
expression, E is a short distance cut-off. At the end we will take the limit E + O .  
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Let us consider Tz2, now. Using (6) and following the same reasoning which led 
us to (14), we immediately get 

Let us evaluate now the crossed terms Tet. Since a,a, lnlr-z'l = a l a :  Inlz-2'1, it 
follows that TcP = Tze. We therefore have 

- i s  I d2r d2z' jx::< d&, dq. E*-d:at lnlz-z'lS2(z-c)S2(z- 7). 

(16) 
- 
I he tirst term in the above expression vanishes, 

because the only contributions come from the points where c =  7, due to the delta but 
at these points d.$-dq and the vector product is zero. 

integrating over z and z' in the second ierm in ji6j and using the Cauchy-Riemann 
equation 

(18) ~"""a: In([- q /  =a:  arg(f-q)  
we get 

where again we used the fact that a, = -a, acting on arg(5- q). The remaining integrals 
may now he performed straightforwardly yielding the result 

T,t+ Tze = i 7 [arg(x'-x) + arg(y'-y) -arg(x'-y) -arg(y'-x)]. 

Observe that the disorder correlation function is (pp* )  = exp[ T.21 and the other correla- 
tion function is (uu*) = exp[ Tzz]. Tea possesses a short distance divergence which may 
be eliminated by introducing the renormalized operator 

(20) 
ek 

271 

This immediately leads us to the renormalized disorder correlation function 

Tz2 possesses, in addition to the short distance divergence InlEl, a path-dependent 
divergent term, which was to  be expected. As we observed, (uu*) was not path 
independent, Using the properties of the delta function and writing j:=j:-jr, one 
may see that 

(23) 
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Defining the renormalized U field as 

we eliminate all divergences from (uu*), obtaining the path-independent renormalized 
function 

From the large distance behaviour in (22) and (25), we see that ( P ) ~  = ( u ) ~  = O  as 
it should be in a theory without mass gap [ll].  

Collecting the terms Tel, Tz2, Tez+ TCe and taking into account the above renormaliz- 
ations of U and P, we arrive at the following expression for the mixed four-point 
function: 

(U(x)U*(y)PL(x')P*(y'))R 

1 1 
l X ,  - y r l e ' / 2 w 2  l X  - y l  i 2 / 2 r 2  

xexpi, arg(x'-x)+arg(y'-y)-arg(x'-y)-arg(y'-x) . (26) 

Since the arg functions are defined up to 27r factors, we see that the above correlation 
function contains the ambiguous multiplicative factors ei(pi/nJn . Th ese are just a reflex 
of the dual algebra (11) and are associated with the various orderings of operators in 
the LHS of (26) [4]. 

As a consequence of ( I ] ) ,  we see that the composite fields $,(x) = lim,,,. v ( x ) p ( x ' )  
and $Z= lim,,,. u*(x') obey the generalized statistics 

- - 

271 II 1 

ddx,  M(Y, r)=exp i i 4 x - y )  + j ( ~ ) S j ( x )  (27) 

with spin S= eZ/2m2. Taking the limits x'x' and y + y '  or y + x '  and x'y' in (26) 
and regularizing the arg functions as lime,o arg(&) = 0, we immediately get the I) 
correlation functions 

(28) 

These are precisely the Euclidean version of the Klaiber solution [9] for the MTM 
correlation functions and therefore we identify t/~; with the Thirring field. The dimension 
of $ is d =(e2+Z2)/4.rr2. Higher functions may be obtained straightforwardly by 
inserting additional A, and 2, fields. The coupling constant of the MTM is related to 
e a n d h a s g = r ( l - e / c ) .  

( 1 

exp{-(+)is[arg(x - y)  + arg(y-x)]}. I < ~ + 1 W 2 d  (hJ(x)JI:&))= Ix-Yl- 
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